
A Low Complexity Method for Detecting
Configuration Upset in SRAM Based FPGAs

R. J. Andraka, P.E. and J. L. Brady
Andraka Consulting Group, Inc. 16 Arcadia Drive, North Kingstown, RI 02852

Abstract

Field Programmable Gate Arrays (FPGAs) have brought
reasonably priced, high performance processing to
applications that previously could not be done without
expensive custom logic. This has opened the door to a
variety of experiments that were previously too expensive
to accomplish. The application of FPGAs to environments
where upset is likely has been slower because of the high
logic cost associated with mitigating upset. The concern
over upset extends to the configuration program for the
reconfigurable (SRAM based) FPGAs. Fortunately or
unfortunately, the devices best suited to signal processing
and the larger logic density devices tend to be the SRAM
(Static Random Access Memory) based ones. The
complexity of configuration integrity monitoring has
hindered application of these devices in environments
where upset is likely.

The traditional configuration monitoring approach has been
to read back the configuration and check it against the
intended configuration. This is time consuming, requires a
separate controller, and is not compatible with logic
memory elements in the Xilinx devices (shift register and
memory implemented in the Configurable Logic Blocks,
called CLBs). Our design, a high data rate 4096 point block
floating point Fast Fourier Transform (FFT), uses those
memory elements extensively in order to fit within the
device size and power limitations. Rather than using the
traditional read back approach, we verify the logic by
periodically sending test vectors through it and checking
the results. We have borrowed from the built in self test
community to arrive at a novel approach using test vectors
to detect changes from a baseline rather than checking for
logic correctness. This leads to a surprisingly simple
implementation consisting of a linear feedback shift
register to generate a known pattern and a cyclic
redundancy check signature to verify the output matches
the baseline output.

I. Introduction

Single event upset (SEU) occurs as a consequence of
radiation exposure injecting enough energy to toggle the
state of a flip-flop or memory cell in a digital design. In
harsh environments such as earth orbit, upsets can be quite
frequent and therefore some means of detecting and
recovering from such upsets are required for a reliable
system[1]. FPGAs are perhaps more vulnerable than
traditional digital logic because they are effectively a

design on top of another design (the underlying design
being the physical infrastructure of the FPGA which
includes all the configuration storage and control logic).
State within the underlying infrastructure defines the user
design by setting switches that determine logic cell function
and interconnect routing. Upsets within the user design can
be dealt with using a variety of conventional means,
including things as simple as just allowing the upset to
flush out in the case of some data path designs.

The infrastructure on the other hand, is generally not very
accessible to the user, making it difficult to probe for upset.
This is compounded by the fact that the configuration state
is typically static once configuration is complete; upsets
remain until the device is reconfigured. Since the
configuration state determines the logic function and
connections within the user portion of the design, upsets
here have a much more profound effect than simply
altering the state of the user circuit. The circuit topology
can actually change as a result of upset. While the ability
for circuit reconfiguration is handy when it is intentional, it
can wreak havoc when it happens as the result of upset.
Such unintentional reconfiguration makes the effects of
upset on a circuit’s outputs much harder to predict than it
would be for a similar design in another medium. Because
the infrastructure is inaccessible, static, and has so much
influence on the user design, SEU mitigation for the
configuration state demands special attention.

Ideally, FPGAs would have some built in SEU mitigation
on the configuration layer. Current FPGAs, however, do
not have such capabilities (with the exception of an Actel
device). Configuration upsets, therefore must be detected
either by observing the effects on the user design, or by
reading back the configuration to compare it against a
reference.

II. Traditional mitigation methods
Triple mode redundancy
The gold standard in SEU detection and mitigation is Triple
Mode Redundancy (TMR), which is essentially a majority
vote [2] on the results from three independent copies of the
protected logic as shown in Figure 1. Triple mode
redundancy will mitigate against misbehaving logic due to
both user circuit faults and configuration upset, provided
the failure does not affect the voting logic. While it is
robust, it is also requires more than three times the logic of
an unprotected circuit to implement. The increased logic
translates to a requirement for more or larger FPGAs to
realize a given function. More logic also means increased
power dissipation and larger power supplies. This added

cost and weight may be acceptable for small designs, but
for larger FPGA designs such as our 4096 point FFT, it can
be prohibitive. In our case both power dissipation limits
and available resources prevent the use of TMR

Mission
Logic

Mission
Logic

Mission
Logic

Majority
Vote

Figure 1. Triple mode redundancy requires three copies of the
hardware plus majority voting logic.

Fortunately, transient errors can be tolerated in many data
path intensive designs, particularly those dedicated to
remote sensing. In these cases, the transient error manifests
itself as noise in the data set, which can either be
minimized though post processing such as averaging, or
can be filtered out by discarding data sets that fall outside
of some prescribed bounds. The effect of an upset to the
user data path gets flushed out of the processor after a finite
number of clocks. If such transient upsets can be tolerated,
then only the upsets that result in a persisting error need to
be dealt with. Typically, this involves only a very small
amount of control logic in the user circuit and the FPGA
configuration itself. That control logic can be protected
either through triple mode redundancy on just that portion
of the circuit or often through a simpler scheme such as
illegal state recovery. The FPGA infrastructure is a bit
tougher to protect, since it is intentionally hidden from the
user. Triple mode redundancy on the entire user design just
to protect the configuration is expensive overkill. Other
methods of monitoring the configuration can provide an
acceptable level of protection at a considerably reduced
cost.

Configuration readback
Some FPGAs, such as the Xilinx Virtextm families, permit
read back of the configuration bitstream. A popular
method of monitoring the configuration compares
configuration read back from the FPGA against a reference
to determine if the configuration has changed. If the
comparison fails, the device is reconfigured to restore the
original configuration. Configuration read back does have
some limitations however, some of which place rather
severe restrictions on the FPGA user design.

In particular, the Xilinx Virtex family and its derivatives
have read back problems associated with the memory
elements in the FPGA. Block RAM read back destroys
data in the block RAM, so it cannot included in the read
back sequence while the FPGA design is also using the
memory. Memory implemented in the logic fabric, either
as random access memory or as ‘SRL16’ shift registers
cannot be read back with the clock running[3]. A quirk in
the FPGA design causes the cell configuration to change if
this is violated. Since read back is on a by column basis,
any columns containing ‘SRL16’ or ‘RAM16’ primitives
cannot be included in the read back sequence while a
device is being clocked. These primitives either need to be
avoided entirely in the user design, or their locations have
to be known and those columns excluded during read back.
The SRL16 primitives in are extremely useful in signal
processing designs, as they are useful for compact delay
queues, reordering circuits, as well as for reprogrammable
constants and tables. Our FFT design depends heavily
upon them for the design speed and density.

Configuration scrubbing
A variation on configuration read back is configuration
scrubbing. Configuration scrubbing takes advantage of the
partial reconfiguration capabilities of the device to
periodically reconfigure the device one column at a time
while the device is running. It is similar in concept to
memory scrubbing where memory protected by error
detection and correction circuits is periodically read and the
data repaired if there is a read error. Configuration
scrubbing can either be done blindly where the
configuration is simply re-written, or as the result of read
back testing. Care must be taken to not overwrite the state
of memories or flip-flops however so that the design
operation is not upset. The same Virtextm device
restrictions mentioned above for memory elements also
apply.

Both read back and configuration scrubbing require a fairly
sophisticated external (to the FPGA) controller to handle
the configuration, read back, and timing. Read back also
will not detect stuck at faults in individual flip-flops that
would be detected with methods that check the data coming
through the data path. Methods including read back are
preferable over blind scrubbing because it provides an
indication of a configuration failure to downstream
processing where a blind configuration does not.

‘Cowboy’ mode
The troubles with read back of certain Xilinx features,
under-appreciation of the problem, cost considerations, and
just plain laziness has led to too many instances of what our
sponsor affectionately calls “cowboy mode” for its carefree
approach. Here, there is no checking of the configuration,
instead the device gets a wholesale reconfiguration only
after an obvious failure is observed in the output data. The
failure is generally detected by a persistent error in received
data sets. Unfortunately, a subtle error can go undetected
and can considerably skew the reduced data. “Cowboy
mode” mitigation is akin to mending the fence after the

horses have all escaped. We cannot recommend this
technique for those planning on long careers.

III. An alternative: periodic test vectors

If we can tolerate transient errors in our data path, we can
detect the persistent errors by monitoring the logic function
using techniques borrowed from the Built-In Self Test
(BIST) community. The techniques introduced here are not
new, but they are also not typically applied to SEU
detection.

Test vectors
Built in self test typically checks design function by
stimulating the design with a set of canned test vectors, and
checking the circuit outputs against a set of expected output
vectors [7]. This can be automated by including stimulus and
check vectors in Read-Only Memory (ROM) added to the
design along with addressing, data path steering and
comparison logic as shown in Figure 2. In order to provide
continued protection, the design must periodically run these
test vectors between sets of operational data. If the process
already has slack time in it, that time can be used to ‘hide’
the test vectors in the normal process cycle. Otherwise,
extra time has to be inserted in the cycle to accommodate
the test vectors. In the event of a test vector mismatch, the
data collected since the last test vector is discarded since
the integrity of the processor during that interval is not
known.

Stimulus
ROM

Mission
Logic

Check
ROM

A=B?

Address
Counters

Figure 2. A test ROM can stimulate the logic with canned test
vectors during idle periods. The circuit outputs can be checked

against a second ROM.

Signature analysis
Unlike design debug, we are not concerned with
determining logic correctness, rather we are only concerned
with whether the logic has changed from a baseline or not.
We can take advantage of this by reducing the output to a
computed ‘signature’ and comparing just that signature
rather than comparing each sample of the output. Proper
selection of the signature computation will provide a
signature match only when the all of the inputs to the
signature computation circuit exactly match the expected
inputs. A commonly used signature, based on modular
polynomial products, is the cyclic redundancy check or
CRC. This particular signature method is popular because
the hardware is relatively simple, and the signatures are
unique for each input pattern (provided the CRC width is
sufficient for the block size). With this in mind, we can
replace the check ROM, its address logic, and the high
speed comparison in Figure 2 with a CRC circuit. The

CRC is simply a register preceded by an exclusive-OR
network with inputs from the register and from the outputs
of the circuit under test. CRC circuits are characterized by
the polynomial, of which there are several commonly used
in data integrity checking. We selected the 16 bit CRC
used in the X25 modem protocol (1+x5+x12+x16) since 16
bits provided enough width for our vector length and kept
the signature computation logic reasonably lean. Other
CRC polynomials could have been used just as effectively.

We can also eliminate the stimulus ROM and its address
logic by substituting an algorithmic test pattern generator
for the canned test vectors stored in the stimulus ROM in
Figure 2. One such generator, a linear feedback shift
register counter (LFSR), produces a pseudo-random vector
sequence. The combination of the LFSR stimulator and the
CRC signature analysis is commonly used in BIST
applications[6,7], so much so that Hewlett Packard (now
Agilent) made test equipment based on this technique[4].
The signature analysis method is illustrated in Figure 3.
We seed the LFSR with a non-zero value to avoid the
initial states, which tend to look like a shift register shifting
1’s into the input word on successive samples. The width
of the LFSR and it’s feedback polynomial determine the
length of the pseudo-random sequence it generates. We
used a 16 bit LFSR, which generates a 65535 sample
sequence. Our design only generates a 256 sample test
vector, so we seeded the LFSR with a random pattern.

LFSR
Mission
Logic

CRC

Figure 3. Signature analysis method replaces stimulation ROM
with a test pattern generator, and the compare ROM with a

sequential signature check circuit.

A fault coverage analysis (also using standard techniques
from the BIST community) should be performed using the
test data set applied to the design to ensure adequate fault
coverage regardless of the method of generating the test
vectors. Our empirical testing to date indicates that the
pseudo-random sequences sufficiently exercise the 16 point
FFT kernel and associated phase rotation logic in our
design.

There are some special cases where a different set of test
vectors might be more appropriate.. For example, our
design contains a 2730 sample shift register for buffering
input data to align two data sets for a single FFT. In order
to reduce power, we use a test vector that is constant for
many clocks in order to reduce the power. We monitor the
output of the shift register for the timing of the transition
between two constant patterns and to make sure all of the
bits out match the constant inputs. The second constant
pattern is the one’s complement of the first to simplify the

check logic. This set up adequately checks the function of
the shift register while keeping the power dissipation due to
logic transitions to a minimum.

IV. Application

The signature analysis and related test vector techniques are
applicable for designs that process data that is not safety-
critical, such as the preprocessing of remote sensor data
including radar, imaging and intelligence applications. In
all of these applications, the on-board processing does
some data reduction to limit the bandwidth required of the
telemetry link to ground stations where the data is used or
stored. Transient anomalies due to upsets in this type of
sensor processing are quickly flushed out of the processing
pipeline and affect only a few samples of data. Because of
the localization of the transient anomalies, they can usually
be tolerated or filtered out in subsequent processing with
minimal data loss. Persistent errors (like those caused by a
configuration upset) on the other hand, do not flush out of
the pipeline and can therefore cause loss of all data until
they are detected and corrected. While signature analysis is
not suited for detecting transient faults, it excels at
detecting persistent errors. The methods presented here
serve well in this scenario with very little added
complexity.

These techniques are not appropriate for safety critical
circuits where even a momentary upset can cause loss of
life or of the mission such as in attitude control systems. In
these cases, a more extensive mitigation scheme, such as
triple mode redundancy is needed to avert disaster[1].

V. Advantages
The signature analysis technique has the very distinct
advantage of a very low hardware overhead for
implementation. The relative sizes of the analysis logic to
our FFT design can be seen in Figure 6. The low
complexity translates directly to lower power and more
resources available for the primary design. It also provides
the not so obvious benefit of enabling the use of the Xilinx
SRL16 shift register and LUT RAM primitives, which for
signal processing applications can represent significant area
and performance advantages. These primitives are not
permitted in systems that rely solely on configuration read
back or scrubbing for protection against configuration
upset. Signature analysis also avoids the most of the
complexity of the external configuration manager logic
since it is contained entirely within the FPGA.

VI. Limitations
While the signature analysis technique does have some
very attractive advantages, it also has some significant
limitations that may make in inappropriate for a particular
application. Signature analysis will not detect transient
upsets unless they occur while the test vectors are being
applied. Some applications, such as remote sensing can
tolerate transient upsets, while others such as flight controls
cannot. In cases where transient upsets can be tolerated,

some means may need to be provided for checking the data
for reasonableness in order to eliminate some of the effects
of transient upset. The signature analysis and test vector
methods also require part of the process cycle to be
dedicated to running test vectors instead of actual data.
Unless there is already slack time built into the process, this
means a higher processor throughput is needed to
accommodate both the mission data and the test vectors.
The higher processing bandwidth translates to increased
power and possibly more expensive processor hardware or
reduced processor capability. These methods only provide
fault isolation to the bounds of the protected circuit (the
circuit surrounded by the stimulus and check logic). Finer
fault resolution requires the design to be broken down into
smaller protected partitions. SEU mitigation using
signature analysis has some part of the logic where an upset
could prevent the upset indication from reaching the
reconfiguration logic (in this case, the decode of the
signature). Other methods such as TMR (in the voting
circuit) suffer similar soft spots. Finally, the test vectors
and signature analysis used need to be considered carefully
to make sure there is adequate fault coverage and that the
signature does not hide certain faults. The CRC is
susceptible to aliasing when the value of a faulty sample is
a multiple of the CRC polynomial and the fault is a burst
error or is spaced by powers of 2 samples[7], Different
CRC polynomials offer protection to different multiple
fault scenarios. These should be considered when selecting
a polynomial. It may be beneficial to use two different
CRC polynomials in parallel to provide better multiple
fault coverage; this is an area for future study. All CRCs
with 2 or more terms in the polynomial will detect single
bit errors.

VII. Application Example:
a 4K block floating point FFT

As an application example of this technique, we present our
design of a 4096 point block floating point FFT designed
under contract to Los Alamos National Laboratories as part
of a space based reconfigurable radio[8]. This design
occupies two identical FPGAs, each of which houses a
4096 point complex FFT set up to perform two 4K point
real-only transforms using a complex 4096 point algorithm.
A third FPGA is dedicated to converting the output to
logarithmic format, performing the final reordering, and
selecting only the frequency bins of interest for output from
the module. The pair of FFT chips must keep up with a 100
MS/sec input data stream with a one-third (33%) overlap
between successive input sets. The input stream is real-only
data, so we perform a complex FFT with two input sets,
then separate the results at the output.

The application is a low earth orbit application, so radiation
tolerance is required. We used the Xilinx QPRO family,
which is a radiation tolerant version of the original Xilinx
Virtextm family. The largest member of the family is the
XCV1000, a million gate device. The device architecture
and timing characteristics are identical to the original

Virtextm family in the slowest (-4) speed grade. The
XCV1000 has 32 4096 bit dual port block memories and
12288 logic ‘slices’. A logic slice basically consists of a
pair of 4 input programmable look up tables (LUTs), a pair
of flip-flops, and some added gates for carry propagation
for fast arithmetic logic. Due to thermal cycling
considerations, the power dissipation for each FPGA may
not exceed 6 Watts.

The input to the two FPGAs is sequenced so that two
successive 4096 point real-only data sets are captured by
one FPGA. While that FPGA is busy processing that set
pair, the next two real-only data sets are captured by the
other FPGA, then the cycle repeats with a period of 10922
100 MHz clocks. The FPGA delays the first set by 2730
clocks to align it with the second, then transforms the pair
using a complex transform. The FFT results are separated
into the two complex frequency domain data sets and
converted to polar form before returning the result to
memory. The FFT is performed in three passes through the
data. Each pass performs a radix 16 FFT on the data, and
rotates (twiddles) the phase of the result in preparation for
the next pass as is required by the mixed radix[9] algorithm.
The processing pipeline consists of two nearly identical
parallel paths, each handling half the data, in order to have
sufficient time complete the three passes within the allowed
10922 clock cycle. A fourth pass simultaneously loads new
data and extracts processed data from the memory, as
shown in Figure 4. . The added pass for loading and
unloading data leaves the FFT and rotator pipeline idle, so
it provides an ideal time to run test vectors through the
processing pipe.

The limited amount of memory available on the FPGA
forces an in-place implementation of the FFT algorithm so
that the memory is written in the same address order it is
read from on each pass. The address order is permuted for
each pass to achieve the necessary data reordering.

input

4K RAM 16 point
FFT

Phase
Rotation

4K RAM

4K RAM 16 point
FFT

Phase
Rotation

4K RAM

4K RAM 16 point
FFT

4K RAM

4K RAM

Pass 1

Pass 2

Pass 3
Polar

Convert

4K RAMPrevious
outputPass 0

Figure 4. 4K point FFT is accomplished using 3 passes through
a 16 point kernel and phase rotator. A fourth pass is used to

load and unload data from the memory.

The 16 point FFT kernel is a very fast and compact fixed
point hardware implementation of the Winograd 16 point
FFT algorithm[9,10,11] with 16 bit inputs and 21 bit outputs.
We selected this algorithm over a more traditional Cooley-
Tukey approach in order to achieve maximum performance
with minimum area. This IP core depends heavily upon the
Xilinx SRL16 shift register primitives for intermediate
storage, data reordering, and matching delays. If that
primitive were not available, the core would occupy more
than double the area, and would likely not achieve the same
level of performance. A Cooley-Tukey approach would
have required either more passes with a smaller radix
kernel, or additional intermediate storage in the form of
either LUT RAM or SRL16 primitives. The increased size
would make the full design too large to fit in the FPGA.
Because of the limited resources, neither triple mode
redundancy nor configuration readback are viable options
for configuration monitoring. Figure 5 contains a block
diagram of one FFT FPGA.

2K x 64
BRAM
port B
(write
only)

16 point
FFT
Core

CORDIC
rotator normalize

De-
normalize

Max
exponent

16 point
FFT
Core

CORDIC
rotator normalize

De-
normalize

Exponent

2K x 64
BRAM
port A
(read
only)

12

Window from
external SDRAM

Input from ADC

Delay 2730
Exponent

accumulator

TPG

Check
TPG

Check

Figure 5. 4096 point block floating point FFT block diagram

TPGx2 16pt FFT x2 CORDIC x2 Check

Check

Delay

Figure 6. 4K FFT floorplan occupies approximately 45% of a Xliinx Virtex1000. The test pattern generators (TPG in the figure) and
CRC check circuits are boxed to illustrate the relatively small size of the added logic. In this design, SRL 16 elements are restricted to

specific columns to minimize unreadable columns so that the signature analysis could be augmented by read back analysis.

Configuration integrity is monitored using the signature
analysis method proposed in this paper. The design is
partitioned into three separate test regions, one for each of the
two parallel process paths, and a third for the 2730 clock input
delay. As of the time of this paper, we had not selected a test
method for the unshaded logic in .Figure 5. The test pattern
generators for the data path are implemented as 16 bit linear
feedback shift registers (LFSR) extended to provide a 32 bit
output. We picked a random seed for the LFSR to avoid the all
zeros state. These are shown as “TPG” in.Figure 5. The
check logic is a CRC-16 with the X25 Modem protocol
polynomial, which is designed for detecting burst errors. We
chose the X25 polynomial because we would expect a
configuration error to appear as a burst error on the FFT
output. The pipeline logic protected by the signature analysis
is shown in the shaded area in Figure 5.

The delay queue is monitored by using a bit pattern and its
inverse when the queue is not holding a set of input data. The
bit pattern is held for a number of clock cycles, then inverted
once and held one time in each 10922 clock cycle. A state
machine and simple decoder check the integrity of the queue
output and issues a fail signal if the bit pattern is not correct or
arrives at the wrong time at the queue output.

We also heavily floorplanned the design for several reasons.
First, floorplanning offers repeatable performance after
recompilation of the design. By explicitly placing the
elements, only the route is determined by the automatic tools,

so we can guarantee the design will meet performance even if
it is later recompiled. Floorplanning also helps to minimize
the routing by placing the logic so that connections are to
nearby neighbors as much as possible. By minimizing the
routing, we also minimize power dissipation. The floorplan
also restricts the SRL16 primitives to specific columns in the
FPGA so that we minimize the number of columns that cannot
tolerate a configuration read back (21 of the 96 columns
contain SRL16 primitives). The logic that is not protected by
the signature analysis circuits (unshaded logic in Figure 5), as
well as the single point of failure soft spot in the signature
checking logic, is placed in columns that do not have SRL16s
so that read back can check those circuits. The design
floorplan is shown in Figure 6. The added signature analysis
logic is highlighted to show its relatively small size.

VIII. Future work
While we have empirically tested the signature analysis for
our application, a more rigorous fault coverage analysis still
needs to be done to determine the level of protection actually
provided. Some study into the effectiveness of various CRC
polynomial choices and test pattern generators is also needed
for various classes of pipelines to be protected. A look at
using multiple signature circuits operating on the same data
should also be investigated as a means of making multiple
fault detection more robust.

IX. Conclusions

We have proposed a method borrowed from the Built-In Self
Test community for detecting configuration upset in FPGA
designs. This method offers considerably reduced complexity
in applications where it is appropriate. The savings in
complexity leaves more of the FPGA resources available for
the primary purpose of the hardware, allowing for more
processing capability per device. This technique also permits
use of powerful device features that had been off limits using
conventional configuration read back techniques. We’ve
identified limitations of this method, particularly the inability
to detect transient upset events and the possible sensitivity of
the fault coverage to the test pattern and signature algorithms
used. By using the techniques presented here, we were able to
put a processor into an FPGA that would not have been
possible using conventional SEU mitigation techniques. We
feel that these ideas have a fairly broad applicability for space
borne sensor programs.

X. Acknowledgements
The development of the 4K FFT design was done under
contract for Los Alamos National Laboratories. The authors
wish to thank Michael Caffrey, Mark Dunham, Paul Graham,
Scott Robinson and the rest of the team at Los Alamos for the
technical and financial support for the project leading to this
paper.

XI. References
 [1] Brinkley, P. and Carmichael, C., “SEU Mitigation Design
Techniques for the XQR4000XL,” XAPP181,Vol 1.0, March
2000.

[2] Fuller, E., Caffrey, M., Salazar, A., Carmichael, C., and
Fabula,.J., “Radiation Characterization, and SEU Mitigation,
of the Virtex FPGA for Space Based Reconfigurable
Computing,” MAPLD 2000 Proceedings, p30, September
2000.

[3] Carmichael, C., “Correcting Single-Event Upsets through
Virtex Partial Reconfiguration,” Xilinx Application Note
XAPP216, June, 2000.

[4] Chan, A.Y., “Easy-to-Use Signature Analyzer Accurately
Troubleshoots Complex Logic Circuits,” Hewlett-Packard
Journal, pp.9-14, May 1977.

[5] Smith, J.E., “Measure of the Effectiveness of Fault
Signature Analysis,” IEEE Transactions on Computers, C-29,
No.6, pp.510-514,1980.

[6] Stallings, W, “Data and Computer Communications”,
Prentice Hall, pp 168,1997.

[7] McCluskey, E. J., “Logic Design Principles with emphasis
on Testable Semicustom Circuits”, Prentice Hall, pp466-469,
1986.

[8] Caffrey, M. “A Space Based Reconfigurable Radio”,
MAPLD 2002 Proceedings, Sept 2002.

[9] Smith, W. W. and Smith, J. M., “Handbook of Real-Time
Fast Fourier Transforms”, IEEE press, New York, 1995.

[10] Winograd, S., “On Computing the Discrete Fourier
Transform,” Mathematics of Computation, Vol. 32, No. 141,
pp. 175-199 (1978).

[11] Blahut, R. E., “Fast Algorithms for Digital Signal
Processing”, Addison Wesley Longman, Inc, 1985

