

Hybrid Floating Point Technique Yields 1.2 Gigasample Per Second
32 to 2048 point Floating Point FFT in a single FPGA.

Raymond J. Andraka, P.E., President, Andraka Consulting Group, Inc. mailto:ray@andraka.com

Abstract1
Hardware Digital Signal Processing, especially hardware
targeted to FPGAs, has traditionally been done using fixed
point arithmetic, mainly due to the high cost associated with
implementing floating point arithmetic. That cost comes in
the form of increased circuit complexity. The increase
circuit complexity usually also degrades maximum clock
performance. Certain applications demand the dynamic
range offered by floating point hardware, and yet require
the speeds and circuit density usually associated with fixed
point hardware. The Fourier transform is one DSP building
block that frequently requires floating point dynamic range.

Textbook construction of a pipelined floating point FFT
engine capable of continuous input entails dozens of
floating point adders and multipliers. The complexity of
those circuits quickly exceeds the resources available on a
single FPGA.

This paper describes a technique that is a hybrid of fixed
point and floating point operations designed to significantly
reduce the overhead for floating point. The results are
illustrated with an FFT processor that performs 32, 64, 128,
256, 512, 1024 and 2048 point Fourier transforms with
IEEE single precision floating point inputs and outputs.
The design achieves sufficient density to realize a
continuous complex data rate of 1.2 Gigasamples per
second data throughput using a single Virtex4-SX55-10
device.

Introduction2
The challenge of fitting the high data rate Fourier transform
processor on a single FPGA is approached along two
avenues: First, the algorithm itself is examined and
optimized specifically to minimize the hardware footprint.
Second, the hybrid techniques alluded to earlier are applied
to reduce the reliance on the hardware extensions needed
for floating point implementation.

Algorithm3
The Fast Fourier Transform can be factored in a variety of
different ways, each of which results in a different
algorithm. The most common factorization is the Cooley-
Tukey algorithm1, which factors each N point transform
into a pair of N/2 point transforms combined with a
“butterfly” operation. The factorization is recursively
applied on the reduced transforms, eventually ending up
with an algorithm that performs a series of butterfly

computations to arrive at the Fourier Transform. Each
butterfly operation consists of a two point transform and a
phase rotation (a complex multiply by a phasor, often called
“twiddle factor”. In a software implementation, the
regularity of the algorithm and data sequencing leads to a
loop structure with very little overhead. The number of
multiplies and floating point operations is of little
consequence because all the operations are performed
serially by a single floating point unit.

There are other factorizations of the Fourier Transform that
can result in a more efficient hardware design. The
Winograd FFT algorithm2 is particularly interesting for
hardware implementations because it is a factorization to
minimize the number of multiplies needed to perform the
transform. The Winograd algorithm performs the transform
as a complex matrix multiply factored into three
consecutively applied matrix multiplies. All the elements in
the first and third matrix are from the set {0,-1,1, j, –j},
which means those matrix multiplies are performed using a
sequence of add operations. The center matrix is a diagonal
matrix containing only real constants. The price paid for
the reduced number of operations is a rather irregular
addressing sequence, which makes it inefficient to perform
with a microprocessor. In a hardware implementation
however, the irregular addressing is easier to deal with
because of the parallelism offered by a hardware solution.
A 16 point Winograt FFT decomposes into three layers of
add/subtract operations on each side of a real multiplier3
(Figure 1), which translates into 74 real adds and only 18
real multiplies4. This represents about one third of the
hardware of a Cooley-Tukey implementation.

Reorder Reorder Reorder

Reorder Reorder Reorder

Weights

Figure 1. 16 point winograd FFT

The Winograd FFT is awkward to factor for sizes larger
than 16 point. The Mixed Radix algorithm5 for cascading
smaller FFTs is used to achieve the larger FFT sizes from
Winograd kernels that perform 4, 8 and 16 point FFTs. The
mixed radix algorithm arranges the data into a matrix,
performing a small FFT down each column, phase rotating
the results and then an additional small FFT across each
row. The hardware required to do this is a phase rotator
(complex multiply and twiddle factor table) and a reorder
memory.

8
Point
FFT

Phase
Rotator

Data
Reorder

1k
samples
BRAM

8/16
Point
FFT

Phase
Rotator

Data
Reorder

128
samples
BRAM

8/16
Point
FFT

Figure 2. Combination of small Winograd kernels using mixed

radix algorithm to achieve larger FFTs.

Hybrid Floating Point Implementation4
Traditional floating point implementations treat each add or
multiply operation as a stand-alone floating point operation
requiring normalized inputs and outputs. When these basic
operations are assembled into more complicated operators,
the intermediate normalize/denormalize operations are
often unnecessary and represent a considerable amount of
wasted hardware. With the hybrid approach, we take larger
pieces of the algorithm and treat them as fixed point blocks
that operate on the mantissas of the input data. The data is
typically de-normalized so that all the data within a block
shares a common exponent. The exponent is passed around
the fixed point operation. The output of the fixed point
operation is re-normalized and the common exponent is
added to the individual exponents arising out of the re-
normalization. The key is to select the size of the fixed
point composite operation so that the result of the operation
has a narrow enough dynamic range so as to not require a
large number of additional bits to avoid overflow.

The FFT design uses Winograd FFT blocks that compute
4, 8 or 16 point FFTs. Considering the properties of the
FFT, these blocks have a maximum gain of 16, which is
accommodated by allowing for a 4 bit growth. These FFT
blocks then make an ideal candidate for a fixed point
function block in this hybrid floating point approach. The
design denormalizes each of the complex samples into the
small FFT so that the largest sample is left justified in the
31 bits presented to the FFT. The remaining samples are
right shifted by the difference between their exponent and
the exponent of that largest sample. A new maximum is
obtained for each 4, 8 or 16 point set so that the FFT is
always performed at the maximum permissible precision.
The FFT design internally expands to 35 bits, and presents
35 bits at the output so that overflow is not possible
regardless of the inputs. Each complex pair out of the FFT
kernel is then re-normalized producing a complex pair with
a common exponent for the I and Q components. The
larger component is left justified. . Note that since the FFT
algorithm necessarily involves addition, no precision is lost
using this method as compared with performing the entire
FFT with floating point arithmetic! This is because the
smaller intermediate results wind up getting rounded in a
full floating point implementation anyway.

The phase rotations are also accomplished with fixed point
hardware (a 35x35 bit complex multiply), but since these
are multiplications they are very similar to floating point
multiplies. The input from the FFT kernel is an IQ pair
with a common exponent with the larger component left
justified. The twiddle factor is a 35 bit fixed point sine and

cosine pair, whose combined magnitude is unity. Since the
selected number representation has a common exponent for
the IQ pair, the result of the operation has the same
common exponent. The worst case rotations are ones that
start with the vector on an axis and rotate it 45 degrees or
end with it on an axis after a 45 degree rotation. In those
cases, there is a one bit growth or shrink of the larger
component, requiring a simple +/- one bit shift to re-
normalize (and the attendant increment or decrement to the
exponent) after the rotation. The inputs and outputs from
this floating point 4/8/16 point kernel (Figure 3) are floating
point IQ pairs with a common 8 bit exponent. The
mantissas are 31 bits sign-magnitude. This internal pair
format is used rather than separate exponents because it
reduces the storage for the intermediate results, makes the
normalization easier, and loses nothing compared to
independent I and Q. The internal representation is
converted from and to IEEE single precision format at the
input and output of the FPGA.

Fixed point

1/4/8/16 point
winograd FFT

 Re-
normal

-ize

Maximum E

Right
Shift

I

Q

Sine/cosine
Table

 Re-
normal

-ize

E

I

Q

Figure 3. Hybrid floating point 4/8/16 point FFT kernel.

FPGA implementation
The design was implemented in a Xilinx Virtex4
XCV4SX55-10 device. All of the arithmetic is confined to
the DSP48 slices so that the design is not slowed down by
the relatively slow carry chains in the FPGA fabric.
Careful implementation has yielded a design whose
maximum clock rate is the DSP48’s maximum clock rate of
400 MHz. The 32-2048 point FFT described here operates
at up to 400 megasamples per second using a 400 MHz
clock, and occupies less than 30% of the FPGA. Three
instances, along with a round robin controller, QDR
memory interfaces (for the data source and sink), and
buffering fit within the device. By sequencing the FFT
starts, the three threads achieve a composite 1.2 Gigasample
per second throughput. Using a hybrid floating point
approach made a single FPGA implementation possible
where it would not have been with a conventional approach.

From
memory

From
I/O

Data
unpack,

buffer and
reorder

Dual port
memory

(5x2Kx64
BRAM)

32 to 2K point
floating pt FFT

32 to 2K point
floating pt FFT

32 to 2K point
floating pt FFT

Data
reorder,

buffer and
repack

Dual port
memory

(5x2Kx64
BRAM)

to
memory

to I/O

Figure 4. Three units in one FPGA work in parallel to achieve

the 1.2 GS/sec data rate

References
 [1] Cooley, J. W. and Tukey, J. W., “An Algorithm for the

Machine Computation of Complex Fourier Series,
Mathematics of Computation”, Vol. 19, pp. 297-301, April
1965.

[2] Winograd, S., “On Computing the Discrete Fourier
Transform,” Mathematics of Computation, Vol. 32, No. 141,
pp. 175-199 (1978).

[3] Smith, W. W. and Smith, J. M., “Handbook of Real-Time Fast
Fourier Transforms”, IEEE press, New York, 1995., pp 128-
136

[4] Blahut, R. “Fast algorithms for digital signal processing”,
Addison-Wesley, 1985, pp 424-425.

[5] Smith, W. W. and Smith, J. M., “Handbook of Real-Time Fast
Fourier Transforms”, IEEE press, New York, 1995., pp 207-
241

