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Abstract1 
Hardware Digital Signal Processing, especially hardware 
targeted to FPGAs, has traditionally been done using fixed 
point arithmetic, mainly due to the high cost associated with 
implementing floating point arithmetic.  That cost comes in 
the form of increased circuit complexity.  The increase 
circuit complexity usually also degrades maximum clock 
performance.  Certain applications demand the dynamic 
range offered by floating point hardware, and yet require 
the speeds and circuit density usually associated with fixed 
point hardware.  The Fourier transform is one DSP building 
block that frequently requires floating point dynamic range. 

Textbook construction of a pipelined floating point FFT 
engine capable of continuous input entails dozens of 
floating point adders and multipliers.  The complexity of 
those circuits quickly exceeds the resources available on a 
single FPGA. 

This paper describes a technique that is a hybrid of fixed 
point and floating point operations designed to significantly 
reduce the overhead for floating point.  The results are 
illustrated with an FFT processor that performs 32, 64, 128, 
256, 512, 1024 and 2048 point Fourier transforms with 
IEEE single precision floating point inputs and outputs.  
The design achieves sufficient density to realize a 
continuous complex data rate of 1.2 Gigasamples per 
second data throughput using a single Virtex4-SX55-10 
device. 

Introduction2 
The challenge of fitting the high data rate Fourier transform 
processor on a single FPGA is approached along two 
avenues:  First, the algorithm itself is examined and 
optimized specifically to minimize the hardware footprint.  
Second, the hybrid techniques alluded to earlier are applied 
to reduce the reliance on the hardware extensions needed 
for floating point implementation.   

Algorithm3 
The Fast Fourier Transform can be factored in a variety of 
different ways, each of which results in a different 
algorithm.  The most common factorization is the Cooley-
Tukey algorithm1, which factors each N point transform 
into a pair of N/2 point transforms combined with a 
“butterfly” operation.  The factorization is recursively 
applied on the reduced transforms, eventually ending up 
with an algorithm that performs a series of butterfly 
                                                 
 
  
  
 

computations to arrive at the Fourier Transform. Each 
butterfly operation consists of a two point transform and a 
phase rotation (a complex multiply by a phasor, often called 
“twiddle factor”.  In a software implementation, the 
regularity of the algorithm and data sequencing leads to a 
loop structure with very little overhead.  The number of 
multiplies and floating point operations is of little 
consequence because all the operations are performed 
serially by a single floating point unit. 

There are other factorizations of the Fourier Transform that 
can result in a more efficient hardware design. The 
Winograd FFT algorithm2 is particularly interesting for 
hardware implementations because it is a factorization to 
minimize the number of multiplies needed to perform the 
transform. The Winograd algorithm performs the transform 
as a complex matrix multiply factored into three 
consecutively applied matrix multiplies. All the elements in 
the first and third matrix are from the set  {0,-1,1, j, –j}, 
which means those matrix multiplies are performed using a 
sequence of add operations.  The center matrix is a diagonal 
matrix containing only real constants.  The price paid for 
the reduced number of operations is a rather irregular 
addressing sequence, which makes it inefficient to perform 
with a microprocessor.  In a hardware implementation 
however, the irregular addressing is easier to deal with 
because of the parallelism offered by a hardware solution.  
A 16 point Winograt FFT decomposes into three layers of 
add/subtract operations on each side of a real multiplier3 
(Figure 1), which translates into 74 real adds and only 18 
real multiplies4.  This represents about one third of the 
hardware of a Cooley-Tukey implementation.  
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Figure 1.  16 point winograd FFT 

The Winograd FFT is awkward to factor for sizes larger 
than 16 point.  The Mixed Radix algorithm5 for cascading 
smaller FFTs is used to achieve the larger FFT sizes from 
Winograd kernels that perform 4, 8 and 16 point FFTs.  The 
mixed radix algorithm arranges the data into a matrix, 
performing a small FFT down each column, phase rotating 
the results and then an additional small FFT across each 
row.  The hardware required to do this is a phase rotator 
(complex multiply and twiddle factor table) and a reorder 
memory. 
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Figure 2. Combination of small Winograd kernels using mixed 

radix algorithm to achieve larger FFTs. 

Hybrid Floating Point Implementation4 
Traditional floating point implementations treat each add or 
multiply operation as a stand-alone floating point operation 
requiring normalized inputs and outputs.  When these basic 
operations are assembled into more complicated operators, 
the intermediate normalize/denormalize operations are 
often unnecessary and represent a considerable amount of 
wasted hardware. With the hybrid approach, we take larger 
pieces of the algorithm and treat them as fixed point blocks 
that operate on the mantissas of the input data.  The data is 
typically de-normalized so that all the data within a block 
shares a common exponent.  The exponent is passed around 
the fixed point operation.  The output of the fixed point 
operation is re-normalized and the common exponent is 
added to the individual exponents arising out of the re-
normalization.  The key is to select the size of the fixed 
point composite operation so that the result of the operation 
has a narrow enough dynamic range so as to not require a 
large number of additional bits to avoid overflow. 

The FFT design uses Winograd FFT blocks  that compute 
4, 8 or 16 point FFTs.  Considering the properties of the 
FFT, these blocks have a maximum gain of 16, which is 
accommodated by allowing for a 4 bit growth.  These FFT 
blocks then make an ideal candidate for a fixed point 
function block in this hybrid floating point approach.  The 
design denormalizes each of the complex samples into the 
small FFT so that the largest sample is left justified in the 
31 bits presented to the FFT.  The remaining samples are 
right shifted by the difference between their exponent and 
the exponent of that largest sample.  A new maximum is 
obtained for each 4, 8 or 16 point set so that the FFT is 
always performed at the maximum permissible precision.  
The FFT design internally expands to 35 bits, and presents 
35 bits at the output so that overflow is not possible 
regardless of the inputs.  Each complex pair out of the FFT 
kernel is then re-normalized producing a complex pair with 
a common exponent for the I and Q components.  The 
larger component is left justified.  .  Note that since the FFT 
algorithm necessarily involves addition, no precision is lost 
using this method as compared with performing the entire 
FFT with floating point arithmetic! This is because the 
smaller intermediate results wind up getting rounded in a 
full floating point implementation anyway. 

The phase rotations are also accomplished with fixed point 
hardware (a 35x35 bit complex multiply), but since these 
are multiplications they are very similar to floating point 
multiplies.  The input from the FFT kernel is an IQ pair 
with a common exponent with the larger component left 
justified.  The twiddle factor is a 35 bit fixed point sine and 
                                                 
  

cosine pair, whose combined magnitude is unity.  Since the 
selected number representation has a common exponent for 
the IQ pair, the result of the operation has the same 
common exponent.  The worst case rotations are ones that 
start with the vector on an axis and rotate it 45 degrees or 
end with it on an axis after a 45 degree rotation.  In those 
cases, there is a one bit growth or shrink of the larger 
component, requiring a simple +/- one bit shift to re-
normalize (and the attendant increment or decrement to the 
exponent) after the rotation.  The inputs and outputs from 
this floating point 4/8/16 point kernel (Figure 3) are floating 
point IQ pairs with a common 8 bit exponent.  The 
mantissas are 31 bits sign-magnitude.  This internal pair 
format is used rather than separate exponents because it 
reduces the storage for the intermediate results, makes the 
normalization easier, and loses nothing compared to 
independent I and Q.  The internal representation is 
converted from and to IEEE single precision format at the 
input and output of the FPGA. 

 

 
Fixed point 

1/4/8/16 point 
winograd FFT 

 Re-
normal

-ize 

Maximum E 

 
Right 
Shift 

I 

Q 

Sine/cosine 
Table 

 Re-
normal

-ize 

E 

I 

Q 

 
Figure 3. Hybrid floating point 4/8/16 point FFT kernel. 

FPGA implementation 
The design was implemented in a Xilinx Virtex4 
XCV4SX55-10 device.  All of the arithmetic is confined to 
the DSP48 slices so that the design is not slowed down by 
the relatively slow carry chains in the FPGA fabric.  
Careful implementation has yielded a design whose 
maximum clock rate is the DSP48’s maximum clock rate of 
400 MHz.  The 32-2048 point FFT described here operates 
at up to 400 megasamples per second using a 400 MHz 
clock, and occupies less than 30% of the FPGA.  Three 
instances, along with a round robin controller, QDR 
memory interfaces (for the data source and sink), and 
buffering fit within the device.  By sequencing the FFT 
starts, the three threads achieve a composite 1.2 Gigasample 
per second throughput.  Using a hybrid floating point 
approach made a single FPGA implementation possible 
where it would not have been with a conventional approach. 

From 
memory

From 
I/O 

Data 
unpack, 

buffer and 
reorder 

Dual port 
memory 

(5x2Kx64 
BRAM) 

32 to 2K point 
floating pt FFT 

32 to 2K point 
floating pt FFT 

32 to 2K point 
floating pt FFT 

Data 
reorder, 

buffer and 
repack  

Dual port 
memory 

(5x2Kx64 
BRAM) 

to 
memory

to I/O 

 
Figure 4.  Three units in one FPGA work in parallel to achieve 

the 1.2 GS/sec data rate 
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